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Abstract— A necessary capability for humanoid robots is the
ability to stand and walk while rejecting natural disturbances.
Recent progress has been made using sim-to-real reinforcement
learning (RL) to train such locomotion controllers, with ap-
proaches differing mainly in their reward functions. However,
prior works lack a clear method to systematically test new
reward functions and compare controller performance through
repeatable experiments. This limits our understanding of the
trade-offs between approaches and hinders progress. To address
this, we propose a low-cost, quantitative benchmarking method
to evaluate and compare the real-world performance of standing
and walking (SaW) controllers on metrics like command follow-
ing, disturbance recovery, and energy efficiency. We also revisit
reward function design and construct a minimally constraining
reward function to train SaW controllers. We experimentally
verify that our benchmarking framework can identify areas for
improvement, which can be systematically addressed to enhance
the policies. We also compare our new controller to state-of-the-
art controllers on the Digit humanoid robot. The results provide
clear quantitative trade-offs among the controllers and suggest
directions for future improvements to the reward functions and
expansion of the benchmarks.

I. INTRODUCTION

Humanoid robots hold the promise to deliver enormous
amounts of human-like physical labor across varied real-
world spaces. A precondition for realizing this potential is
for humanoids to be able to stand and walk (SaW) in natural
settings while withstanding typical disturbances encountered
during deployments. In particular, walking provides mobility
and standing provides the foundations for humanoid ma-
nipulation tasks. For more traditional wheeled based robots,
designing controllers for analogous SaW behaviors is rela-
tively straightforward due to the inherent stability of wheeled
platforms. However, for humanoids, even these basic SaW
behaviors are a challenge due to the inherent instability of
bipedal systems.

There has been recent progress in bipedal locomotion
through sim-to-real reinforcement learning (RL) [1, 2, 3,4, 5,
6]. The approaches train controllers in simulation using vari-
ous reward functions to shape the locomotion behavior while
performing domain randomization to help transfer to the real
world. While these approaches have yielded impressive real-
world video demonstrations, there have not been repeatable
quantitative evaluations that allow for clear comparison of the
real-world trade-offs among different methods. This limits
our ability to systematically explore the space of reward
functions to develop effective SaW controllers. The lack
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Fig. 1. We propose a set of metrics with an easy-to-setup testing fixture
and provide quantitative results towards the controller performance in the
real-world. Our proposed RL-based method produces a robust standing-and-
walking controller for the humanoid robot Digit. The learned controller can
handle a set of significant amount of disturbances, such as lateral push at
150N for 500ms shown in A and sagittal push at 200N for 500ms shown in
B. The controller is able to walk, stand, and seamlessly transition between
these two settings.

of systematic evaluation is especially pressing as current
reward functions are often based on engineered constraints
which may be counter-productive for producing reliable SaW
behaviors under disturbances.

In this paper, we address the above issues with the goal
paving the way for experimentally measurable progress in
SaW control learning. Our first contribution is to introduce a
SaW benchmarking procedure that specifies repeatable phys-
ical experiments for measuring real-world metrics of SaW
controllers. Importantly, these experiments can be conducted



without expensive equipment, using simple devices that can
be constructed from readily available materials. As our
second contribution, we leverage the proposed benchmark
to clearly identify areas of improvement for current reward
functions, leading us to revisit the reward-design problem
for SaW controllers. We attempt to construct a minimally-
constraining reward function that avoids undesired behavior
with the hope that such a reward function will allow for
more flexibility in learning to reject disturbances and react
to changing commands. Our third contribution is to use the
benchmarking procedure to evaluate and compare our new
controller with the manufacturer-supplied controller and a
current state-of-the-art reward function. The results reveal
trade-offs that would not be apparent without the rigor
of repeatable experiments, emphasizing the importance of
systematic evaluation in advancing the field of SaW control
learning.

Importantly, we are not claiming that the current SaW
benchmarks are complete or that the new reward function
is truly minimal and cannot be further improved. Instead,
we view the SaW benchmarks and new reward function as
starting points on a trajectory of continual, measurable real-
world improvements. Indeed, our experiments in this paper
already point to directions for improvement.

II. PROBLEM STATEMENT AND RELATED WORK

We consider the problem of producing a controller for
a bipedal humanoid robot that supports the following two
commands: 1) Stand. The robot should stop if moving and
stand in place with two feet on the ground. 2) Walk. The
robot should walk at a specified velocity (direction and
speed) and a specified heading with an important special
case corresponding to rotating in place. Note that the key
distinction between standing and walking is that for standing
the default behavior should be for both feet to be on the
ground, while for walking, including walking in place, the
feet cycle through stance and swing phases.

To be useful in practice, a standing and walking (SaW)
controller must be able to reliably switch between different
commands and reject physical disturbances, such as bumps
or terrain features, that may occur in an application. The
primary objective of disturbance rejection is to prevent the
robot from falling, while the secondary objective is to mini-
mize departure from the commanded behavior. For example,
when commanded to stand the occurrence of a large enough
disturbance may require the robot to take a step in order
to avoid falling, which conflicts with the default command
objective of having two feet on the ground. However, we
would typically prefer the robot to take the step, rather than
risk falling by struggling to keep both feet planted.

Prior Standing and Walking Control. There have been
a number of prior approaches for model-based humanoid
SaW control [7, 8, 9, 10, 11]. More recently, there has
been significant progress in using sim-to-real RL for training
bipedal locomotion controllers, e.g. blind locomotion for
multiple gaits [2, 3, 4], locomotion under different loads [5],
and visually-guided locomotion over irregular terrain [6]. In

many cases, these controllers do not have a native standing
mode and instead walk in place. In cases where standing is
explicitly supported, a separate standing controller is usually
designed or trained (e.g. [12, 13, 14]).

One challenge in using separate standing and walking
controllers is that switching between the control modes
is not always straightforward. This is because the control
state-spaces of each controller have little native overlap,
which requires the use of difficult to tune heuristics to
yield smoother and more reliable transitions. For example,
this may involve hand-engineered cycle-time constraints in
transitioning from waking to standing [12] or blending
the outputs of the controllers at transition points [13, 15].
Another approach to improving controller switching is to
train controllers for different behaviors from starting states
typical of other behaviors [13], which raises the challenge of
generating appropriate start state distributions. Alternatively,
in this work, we choose to train a single SaW controller that
does not require any form of reference or clock-based inputs,
and natively learns to switch freely between commands
throughout the entire learning process.

Reward Functions for Bipedal Locomotion. One of
the challenges in sim-to-real RL for bipedal locomotion
is specifying a reward function that results in the desired
locomotion characteristics. Prior work has used highly pre-
scriptive reward functions to describe preferred character-
istics of the behavior to be learned. This includes clock-
based rewards that asserts preferences for stance and swing
phases in alignment with periodic clocks [2], and reference-
motion rewards that attempt to imitate joint or task space
reference trajectories captured from humans [16, 17] or pro-
duced through optimization [18]. Designing such prescriptive
reward functions is expensive and brittle as they must be
retargeted to each robot and behavior variation (e.g. velocity)
or extensively tuned and do not handle transitions between
gaits well. For example, prior work on fast locomotion (i.e.
running) requiring substantial manual tuning for transitions
between multiple speed gaits and standing [12]. While
such prescriptive reward designs have yielded impressive
controllers it is unclear whether they are placing unneces-
sary, or even counter-productive constraints, on the learned
controllers. For example, handling disturbances can require
generating behavior that significantly departs from the con-
straints imposed by the periodic clock or reference motions.
These challenges provide our motivation for investigating
minimally-constraining reward functions in this paper.

Evaluating Locomotion Controllers. The vast majority
of prior work on model-based and RL-based control for
bipedal locomotion does not report real-world performance
metrics based on repeatable experiments. Instead, the pri-
mary method of demonstrating real-world performance is
based on producing videos of the controllers in action. For
example, many studies are limited to apply external distur-
bances by human experimenters [3, 19] or demonstrating the
robot traversing arbitrary terrains and obstacles [2], which
are non-reproducible and not quantitative. Some exceptions
do consider hardware setups for repeatable tests of specific



tasks [20], such as disturbance rejection and low-level ve-
locity tracking. For example, prior work [21] used an impact
generator, similar to those used in vehicle testing, which
provides repeatable quantitative results, but is not widely
available to researchers. The failure to establish objective
measurements of real-world performance that can be easily
implemented by most researchers has made it difficult to
judge progress and compare competing methodologies. This
failure motivates our proposal in this paper for simple metrics
that can be experimentally measured using widely available
materials and devices.

III. QUANTITATIVE SAW PERFORMANCE BENCHMARK

We propose a reproducible set of benchmarks for quanti-
tatively assessing key aspects of a SaW controller in the real-
world. These metrics quantify the disturbance rejection abil-
ity, accuracy in command following, and energy efficiency.
The benchmark is intended to allow comparison of any SaW
controller, regardless of what method a controller is based
on.

A. Disturbance Rejection

To enable standardized comparison, we propose a formal
impulse perturbation test with precise control over distur-
bance parameters. Specifically, our method applies a force
F' of fixed magnitude and duration At to the robot base,
generating an impulse J. By systematically varying F' and
At over a range of values, we can quantify performance in
terms of the success rate for recovery after experiencing the
impulse J.

In order to objectively measure this metric in the real
world it is necessary to apply forces consistently in a
repeatable manner, without human input. To that end we
construct a simple impulse application device from off the
shelf materials.

Figure 2 shows our impulse application device in the
lab environment. The impulse applicator works by releasing
a weight suspended by magnets, which is automatically
disconnected after a preset duration. After applying a fixed
duration impulse, the robot is freely able to recover. We
provide a video! to further clarify this procedure and have
open-sourced the part list and construction details on the
project website?.

Metric 1: Standing Fall Percentage. In this paper, to
simplify the measurement setup, we limit the experimental
scope to characterizing disturbance rejection when standing.
We focus on disturbances in the positive and negative
X and Y directions, where the positive X direction is
the direction faced by the robot. For each direction and
selected combinations of weight and duration, we compute
the metric value over multiple trials. Each trial involves
initializing the robot by issuing a standing command and
then using the device connected in the appropriate direction
to provide the specified impulse weight and duration. The
metric value is the percentage of trials leading to success,

Thttps://youtu.be/ZraDSES5Peeg ?si=Pt9xwpN2SNihLNTp&t=46
Zhttps://b-vm.github.io/Robust-SaW/
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Fig. 2. An impulse is applied to the robot by means of a weight connected
by a rope. Force F is regulated by adding and removing weight. Duration
At is regulated by a microcontroller that automatically disconnects the
weight from the rope, after a set amount of time. The rope is always attached
to Digit at the same height of 122 cm.

where a trial is successful if the robot does not fall. There
are many variations of this metric using the same device
that can be considered in future work. For example, defining
more detailed metrics such as how much the average robot
position changed after the disturbance, the time taken for
recovery, or the same procedure can be applied to a robot
when walking at a particular speed.

B. Command Following

Precisely executing commanded motions is essential for
a humanoid robot to reliably perform planned behaviors.
However, metrics of command following accuracy often
rely on motion capture systems, limiting reproducibility. To
address this, we propose three simple metrics that measure
the accuracy of velocity control and control of in-place robot
rotation.

Metrics 2 and 3: In-Place Rotation Accuracy. For
certain applications it is useful for a humanoid to be able
to rotate its body to a particular orientation while remaining
in place. To test this we conduct trials where the robot starts
in a standing position in the middle of a 2ft diameter circle,
which is considered the region of zero positional error. The
robot is then given a command to rotate at angular velocity
w, for At seconds, which ideally should correspond to a
commanded orientation change of 6. = w, - At. We compute



two metrics at the end of the trial: 1) angular error, which is
the difference between the commanded angular rotation and
the actual rotation, and 2) lateral drift, which is measured
as the distance of the furthest foot from the boundary of the
starting circle.

Metric 4: Velocity Accuracy. We consider a simple veloc-
ity tracking test using only basic measurements. Specifically,
we issue a constant velocity command v for duration At,
which should ideally produce a net translation of d. = v-At.
For our current procedure, each trial of the experiments
starts the duration clock when the robot is in a standing
position and then after At seconds the standing command
is issued. The distance traveled is then manually measured
and averaged across trials. By comparing the actual distance
traveled d,. to the commanded distance d., we can quantify
velocity control performance without specialized equipment.
This metric assumes that the SaW controller under test
is able to walk on flat terrain without falling. Note that,
this procedure does not explicitly account for startup and
stopping times for the robot. Instead, velocity ramp up and
down are assumed symmetrical, thus canceling out.

C. Energy Efficiency

Metric 5: Energy Efficiency. In addition to quantifying
the accuracy of command execution, energy efficiency of
command execution is an important performance metric for
real-world humanoid viability. More efficient gaits directly
extend operational runtime by conserving battery power.
Additionally, a more efficient gait reduces mechanical wear
from torque and impacts, prolonging hardware lifespan. The
energy usage of a gait over a duration A can be approximated
by computing the work done by the actuators: W = fOA T
w; dt, where T, represents the motor torques at time ¢ with
the motor angular velocities w;. This metric ignores motor
losses, particularly significant when standing, so we omit
standing measurements. In our experiments we estimate the
work done over a time interval by using the robot’s estimated
torques, rather than the actual torques, due to the lack of a
torque sensor and current draw information. As a metric we
report the estimated average energy usage per meter traveled
to normalize for different travel distances.

IV. SAW TRAINING AND REWARD DESIGN

Below, we first describe our controller architecture and
simulation-based training framework. Next, we describe the
design of our SaW reward function that aims to minimally
constrain the learned behavior.

A. Architecture and Training Framework

Our SaW controller is a (64, 64) two-layer long short-
term memory (LSTM) [22] recurrent neural network. The
input to the network consists of: 1) the current robot state
[motor velocities, motor positions, joint velocities, joint po-
sitions, torso orientation], and 2) the user command ¢, =
[Cz, €y, Cyaw), specifying the desired x, y, and angular veloci-
ties, where standing corresponds to ¢,, = [0, 0, 0]. The output
action of the controller is the joint-space PD setpoints for all

20 actuators. The SaW controller is operated at 5S0Hz with
the PD controllers operating at 2kHz. We train the controller
using the Proximal Policy Optimization (PPO) [23] RL
algorithm, which is extended with a mirror loss, to encourage
symmetry in policy behavior. Our domain randomization is
similar to [6].

We follow a standard episodic RL training process.
Each episode begins with the robot initialized in a default
standing position and lasts for 16 seconds of simulated
time, or is terminated early when the robot falls. Dur-
ing an episode a new user command is uniformly sam-
pled every 2 to 6 seconds from five categories: [stand-
ing, walking in sagittal plane, walking laterally, rotating
in place, omnidirectional walking]. User command ranges
are sampled from c,: [—0.5,2.0] m/s, ¢,: [—0.5,0.5] m/s,
Cyaw: [—0.5,0.5] rad/s.

In addition, during each episode, for each frame there
is a 1% chance of getting a random push to encourage
disturbance rejection capability. These random pushes were
uniformly sampled from a range of 200N to 800N, lasting a
single timestep (20ms). Our early ad-hoc testing indicated
that using a more diverse distribution did not improve
performance. However, as we will see in our experiments,
our real-world benchmarking process will lead to a different
conclusion (see Section V-B).

B. Reward Design

During an episode, we seek a reward function that indi-
cates throughout an episode how well the behavior satisfies
the current user command. Additionally, the reward function
should achieve this, while also minimally constraining other
aspects of the learned behavior. Our design process began
with an enumeration of the reward terms found in the
many prior studies on RL for legged-robot locomotion. We
then progressively added terms based on observations of
intermediate learned policies. The resulting reward function
is composed of a number of additively weighted reward
terms, which are shown in Table I along with the associated
weights. Below we outline the essential role that each term
plays in the overall design.

Basic Command Following. The first three essential
components in Table I measure how well the current robot
velocities and orientation match the commands. We found
that training with just these components results in a hopping
locomotion behavior, where the robot moves by jumping
with both feet. While this behavior satisfies the commands,
it is not desirable walking behavior indicating that additional
reward terms are required.

Single Foot Contact. To address hopping we have found
multiple approaches that can individually be added to the
above three reward terms to learn to walk instead. These
include: 1) adding a base height reward, 2) clock based
rewards and inputs [24], 3) tuning exploration noise, 4) a
feet contact transition reward, and 5) a single feet contact
reward. We found that the most reliable and unconstrained
way to produce walking instead of hopping is via the single
foot contact reward, which also does not require tuning.



For non-standing commands, the single foot contact com-
ponent provides a reward of 1 at each time step where only
one foot is in contact with the ground. To allow for some
overlap in the stance and swing phases, we add a grace period
of 0.2 seconds. This means that if single contact occurred
at least once in the last 0.2 seconds, the reward is granted,
otherwise the reward is O.

For the standing command, this reward component is
a constant of 1, giving no preference for foot contact.
Intuitively, we might expect standing to involve rewarding
double foot contact. However, this is problematic since it
penalizes the recovery steps needed to reject disturbances,
as that requires breaking ground contact of at least one of
the feet. Additionally, when transitioning from walking to
standing, requiring double foot contact will cause a policy to
opt for the closest stance position rather than the most stable
one. Thus, to learn standing while avoiding these problems
we opt to implicitly reward standing utilizing existing reward
terms. It turns out that most reward terms will be greater
when a policy stands still with both feet on the ground, than
when it steps in place or only stands on one foot.

Sim-to-Real and Style. While the combination of the
above reward terms are enough to reliably train a SaW
controller in simulation, RL often results in controllers
that lack certain stylistic characteristics that can influence
visual properties and more importantly stability of sim-to-
real transfer. We note that, it is not clear whether these
stylistic characteristics are missing due to the inability of
RL to perfectly optimize the above reward terms, or if the
above terms are inherently inadequate. In either case, the
inclusion of additional stylistic reward terms is intended to
more reliably and quickly lead RL to acceptable solutions.
The following terms are ones that we have found to be
important to include, noting that a more exhaustive analysis
may reveal a more minimal set.

o base height: maintain a consistent base height during

different modes and commands.

e feet air time: this term regularizes the stepping fre-
quency by applying a penalty of 0.4 at each foot
touchdown, which can be counteracted by a positive
reward component equal to the number of seconds since
the foot has been in the air (airtime). Without this
component the learned controllers tend to favor gaits
with step frequencies that are stylistically too large,
which may be due to those frequencies corresponding
to likely local minima. This component is a constant
when standing.

e feet orientation: make feet point out straight at all times,
except when commanded to rotate.

o feet position: loosely define the foot position during
stance, to prevent undesired stance positions.

o arm position: loosely defines desired arm joint angles to
prevent unwanted arm movements, while allowing use
of arms for balancing. This stylistic component can be
important to minimize the potential for self-collisions.

e base acceleration: prevent jerky base motions.

TABLE I
REWARD TERMS

Reward Term Definition Weighting
e 5 ey —cay) jf ¢

x, y velocity 6_5_(“1?/_%}/)2 else 0.15, 0.15

Yaw orient. e300 ad(ayaw cyaw) 0.1

Roll, pitch orient. e_‘m ad(arp,erp) 0.2

if cg
Feet contact if ngy» = 1forany t* € [t — 0.2,] 0.1
else

Base height e~20"Ipz—cpl 0.05
1 if ¢

Feet airtime 1.0f

{Zfe(l my (tair,g —0.4) x Lyq 5 else
e~ X e p=Ceet.ml if cygu| > 0
. . yaw
Feet orientation — 5 I¥feet, py— feet.my|  else 0.05
—3:IPfect—Cfect! if

Feet position ¢ 1 cs 0.05
1 else

Arm e 3 [1€arm —carm | 0.03

Base acceleration e 0012 bayz| 0.1

Action difference e 0022 lat—a¢ 1| 0.02

Torque e 002 % 3= [tmotor | /tmax 0.02

¢ = a command; c¢s; = standing command; ¢ = a quaternion; p = a
position; b = base acceleration; gd(-) = quaternion distance function;
ne = number of feet in contact with ground; 1,4 = boolean variable
indicating a touchdown in the current timestep; T = note that the
feet airtime reward is the only sparse reward, therefore the weight is
significantly higher than other terms.

« action difference: minimize changes in actions between
timesteps.
e forque: minimize torque usage.

No Clocks. While prior work that uses clock-based reward
signals (e.g. [24]) does allow for standing, the nontrivial
question of what to do with the required clock inputs during
standing and transitions remains a challenge. Additionally,
the clock framework incentivizes low foot velocities in
standing mode, which directly impedes disturbance rejec-
tion capabilities. Rather, the above reward function does
not require reference clocks, trajectories or signals of any
sort to learn walking, and allows a policy to control such
parameters internally. Without such signals we eliminate
the problem of having to engineer the transitions between
standing and walking modes. Additionally for disturbance
rejection, without any references to attain to, the policy is
free to move feet in any way it seems fit to stay upright.

V. EVALUATION RESULTS

In this section, we use our proposed benchmarking pro-
cedure to evaluate and compare three SaW controllers for
the Digit V3 humanoid robot manufactured by Agility
Robots: 1) Single Contact RL. trained using our minimally-
constrained SaW reward function from Table I, 2) Clock
Based RL. trained using a state-of-the-art clock-based [24]
reward function, and 3) Agility Controller. the manufacturer-
provided controller. In addition, we describe how the results
motivated the training of a new SaW controller, called Single
Contact++ RL, which yielded measurable improvement.



Disturbance rejection success rates in x-direction
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Fig. 3.

Disturbance rejection success rates in y-direction
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Disturbance rejection success rates for various humanoid SaW controllers in the x-direction (left) and y-direction (right). Results show that our

Single Contact++ reward function outperforms competing alternatives. Our Single Contact controller shows asymmetric and non-monotonic results in the

y-direction, emphasizing the importance of systematic evaluation.

A. Disturbance Rejection While Standing

Metric 1: Standing Fall Percentage. We use our impulse
application setup to conduct disturbance rejection experi-
ments on the robot. For each impulse, we attempt 5 trials
to gauge reliability and stop testing at the first failure to
avoid damage to the robot. Figure 3 show results for = and
y directions respectively. We note the number of tests for
every impulse in the plots. The range for force and duration
is [79,214] N and [200,500] ms. We chose these ranges
of forces and durations to yield a set of impulses that are
both challenging to all controllers, while minimizing risk of
damage to the hardware. The upper end of the force range
corresponds to approximately half the robot weight.

We find that the Single Contact RL Controller outper-
forms the Clock based controller in the x-direction, for both
forward and backward pushes, as expected. Interestingly
there are large asymmetries and gaps showing up for the
Single Contact RL controller in the y-direction. Unintuitively,
in some cases a higher impulse push can be more easily
dealt with than a lower impulse. This is unexpected, and
underscores that claims of stability must be substantiated
through formal experiments.

B. Benchmark Guided Improvement

The above results revealed several weaknesses in the dis-
turbance rejection profile of the Single Contact RL controller.
In particular, the maximum backward force and duration
led to complete failure and there were many gaps in the
y-direction disturbance profile. These results led us to hy-
pothesize that the limited disturbances used in our simulation
training episodes were not adequate for the desired sim-to-
real robustness. We trained a new version of Single Contact
RL, called Single Contact++ RL, by using the same reward
function but adjusting the simulated disturbances to be closer
to the test distribution. Specifically, the random pushes are
uniformly sampled from [20N, 200N] and [200ms, 500ms]
uniformly in all three dimensions. In addition, in an attempt
to encourage improved drift performance we increased the
duration of commands before a new commands is sampled
from [40, 100] timesteps to [100, 300] timesteps.

The results of disturbance benchmarking for this new
controller are in Figure 3 and show significant improve-
ment, achieving perfect disturbance rejection in our tests.
In an attempt to find the limits of the Single Contact++
RL controller we performed additional disturbance tests of
258 N @ 500 ms, the max our pulling device is capable of.
The Single Contact++ RL controller passed this test in all
directions. We do not investigate this further due to the risk
of damaging the hardware. This result shows the utility of
the proposed benchmarking approach for driving measurable
improvement.

C. Command Following

Metrics 2 and 3: In-Place Rotation Accuracy. We
measured the drift and heading accuracy for all controllers
rotating at 0.5 rad/s for 1, 5 and 30 seconds. The results in
Figure 4 reveal substantially lower drift for the RL controllers
compared to the model-based Agility Controller. The Agility
Controller especially suffers large drifts up to 2 meters in the
30 second test. Interestingly, the clock based controller has
the largest drift for the 1 second test. We observe from the
foot motions that this is caused by sudden changes in the
clock signals, due to the transition from standing to walking
mode. We observe in our testing that the Single Contact
controllers sway less during rotating, causing a lower drift.
Finally, the Single Contact++ controller performs best in all
cases. We hypothesize this is due to the longer time range
used for command windows during its training, which allows
the policy to become more sensitive to drift that accumulates
over longer time periods.

Figure 4 also shows the RL controllers have a rather low
angular error compared to the Agility controller. This is
likely due to an architectural difference, as our controller
tracks a rotating heading, rather than a yaw velocity. The
result is that the RL controllers are highly accurate in rotating
a desired number of degrees.

Metric 4: Velocity Accuracy. We test velocity command
following accuracy by commanding 1 m/s for 10 seconds.
The resulting distances are shown in Figure 5. We find that
the Agility Controller undershoots the target, yielding an
average velocity of 0.74 m/s. The Clock Based RL controller



Command following test: turn rate 0.5 rad/s (n=5)
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Fig. 4. Command following accuracy for turning in place. Error bars are

standard deviation. Also note that the 30 seconds drift results for Agility
Controller were in some cases helped by the robot tether. It is safe to assume
results without tether would have been closer to the upper end of the error
bar.

is most accurate at 1.04 m/s, while the Single Contact
RL Controller overshoots at 1.13 m/s. The overshooting
performance of the Single Contact RL controller does not
occur in simulation, where the actual velocity is slightly
below the commanded 1 m/s. This indicates a sim-to-real
inconsistency. Interestingly, the increase in speed between
sim and real is three times less for the Clock-Based policy,
indicating that the constraint imposed by the clock might help
this aspect of sim-to-real transfer. This point deserves further
investigation. These metrics were not recorded for Single
Contact++ due to a hardware failure during experiments
close to the submission deadline.

D. Energy Efficiency

Metric 5: Energy Efficiency. During the same 10 second
walk we record positive work done by the motors and plot the
power usage estimate in Figure 5. Interestingly the Agility
Controller uses less energy than both RL controllers, when
accounting for the difference in distance traveled. This is also
apparent visually during tests, as the RL controllers stomp
more loudly. Although our method of approximating energy
usage is not perfect, it is interesting to realize that at least
33 J/m are not being spent usefully by the RL controllers. We
hypothesize that higher energy usage might correspond to the
situation where our RL controllers would always anticipate
disturbances, so we noticed hardware execution has more
stompy touchdowns and more impact forces to be prepared
for a disturbance at any time. These results suggest the next
iteration of our SaW reward function, which will emphasize
smaller ground contact forces. The energy profile was not
recorded for Single Contact++ due to a hardware failure close
to the submission deadline.
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1000 - total distance: 10.4 m
energy per meter: 182 J/m
mean stride length: 0.39 m
500  Stride frequency: 2.70 H.

power [W]

0 u T

éingle Contact Based RL Controller

total energy: 2033 |
1000 - total distance: 11.3 m

= energy per meter: 180 J/m
. mean stride length: 0.35 m
“gJ 500  stride frequency: 3.20 Hz
g

01— ‘ — . : ‘ . : .
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time [s]
Fig. 5. Approximation of power consumption for a commanded run of 1

m/s for 10 seconds. Policies start in standing mode, and end in standing
mode. * Note that results for Single Contact++ RL Controller are missing
due to an experiment damaging the robot close to submission.

VI. SUMMARY

The goal of this paper is to lay the foundations for con-
tinually measurable improvement of humanoid standing and
walking (SaW) controllers. For this purpose, we introduce
a set of quantitative real-world benchmarks for evaluating
humanoid standing and walking (SaW) controllers, cover-
ing disturbance rejection, command following accuracy, and
energy efficiency. We also revisited prior reward designs
from previous RL-based SaW approaches in an attempt to
arrive at a minimal set of reward terms. We demonstrate the
benchmarks’ utility by comparing our newly learned SaW
controller against a manufacturer-provided controller and a
state-of-the-art learning-based controller trained with clock-
based rewards. The proposed metrics provided clear, quanti-
tative comparisons of the strengths and weaknesses of these
controllers. In particular, the benchmarks reveal unexpected
failure modes in the learning-based controller, which guided
targeted improvements, ultimately resulting in an enhanced
controller that successfully handles all tested disturbances.
The benchmark results provide valuable insights into the
current limitations of learned controllers for humanoid SaW,
including lower energy efficiency and a significant sim-to-
real gap.

These results underscore the crucial role of systematic
real-world benchmarking in advancing humanoid SaW con-
trol and other aspects of humanoid robotic control. The
proposed benchmarks and reward functions serve as only
a starting point and we believe that by continuously iterating
and building upon these benchmarks, the research commu-
nity can achieve measurable and consistent progress in real-
world humanoid locomotion capabilities.

Future work should focus on optimizing energy efficiency
without sacrificing performance on other metrics, as well
as improving motion smoothness, factors we believe to be
correlated.
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